Finden Sie schnell technische keramik für Ihr Unternehmen: 222 Ergebnisse

technische Keramik

technische Keramik

schleifen, Bohren und maschinelle Bearbeitung technischer Keramik LOHNBEARBEITUNG , präzise und leistungsstark in den Bereichen: Polieren / Gleitschliff-Abteilung mit viel Know-How, Profil schleifen, Innen-u. Außen ø schleifen, Fasen u. Nuten schleifen, trennen. Modernste Schleifmaschinen mit innovativer Technik und unser Personal mit weitgehend langjähriger Erfahrung ermöglichen sehr präzis ausgeführte Arbeiten sowie vielseitige Schliffe und Oberflächenstrukturen für Groß- und Kleinserien.
Technische Keramik

Technische Keramik

Bearbeitung von Teilen aus Technischer Keramik Die niedrige Dichte von Technischer Keramik im Vergleich zu Stahl, die chemische Beständigkeit, die gute Härte und Festigkeit sowie Verschleiß- und Korrosionsbeständigkeit, auch bei Hochtemperaturanwendungen, führt beim Einsatz von Keramikbauteilen zu überlegenen Standzeiten und ermöglicht einen dauerhaft wirtschaftlichen Prozesseinsatz. Produkte aus Technischer Keramik finden deshalb in unterschiedlichsten Einsatzgebieten Anwendung. Diesen Anforderungen Rechnung tragend, bietet die Glastechnik Kirste KG eine effiziente und hochpräzise Bearbeitung von Bauteilen aus Technischer Keramik an. Spezialisiert auf die hochgenaue Fertigung werden • Rundstäbe aus transluzentem Opalglas • Rundstäbe aus Keramik • und Keramikplatten im Kundenauftrag in die Fertigung übernommen. Hierbei werden die Teile hochgenau im Durchmesser geschliffen oder mit CNC-gesteuerten Fräsern an der Oberfläche (Nuten, Rundungen, Aussparungen) bearbeitet.
Technische Keramik

Technische Keramik

Technische Keramik Der Werkstoffbereich Technische Keramik erschließt der voranschreitend wachsenden Industrie neue Möglichkeiten der Produktivität. Diese Möglichkeiten ergeben sich durch das Ausdehnen der Einsatzbedingungen und Standzeiten von Werkzeugen, Anlagenteilen und Produkten. Als technische Keramik werden nicht-metallische, anorganische und (teil-)kristalline Materialien bezeichnet, die aufgrund ihrer spezifischen Eigenschaften in der Industrie Anwendung finden. Im Gegensatz zur klassischen Keramik werden insbesondere bei Hochleistungskeramiken als Ausgangsmaterialien häufig keine natürlich vorkommenden Mineralien verwendet, sondern chemisch aufbereitete oder synthetisch hergestellte, deren Zusammensetzung exakt eingestellt werden kann. Dadurch können die Eigenschaften gezielt und reproduzierbar auf die gewünschte industrielle Anwendung angepasst werden. Keramiken zeichnen sich im Allgemeinen durch hohe Härte und Verschleißfestigkeit, gute Korrosionsbeständigkeit und herausragende thermische Eigenschaften, insbesondere einen hohen Schmelzpunkt und geringer thermischer Dehnung aus und können daher in Feldern eingesetzt werden, in denen herkömmliche Werkstoffe versagen würden. In der Hochtemperaturtechnik bestehen beispielsweise feuerfeste Auskleidungen und Brennerdüsen aus Keramik. Die hohe Verschleißfestigkeit technischer Keramik ermöglicht den Einsatz als Gleit- und Dichtelemente mit langen Standzeiten. Dank ihres breiten Spektrums an elektrischen Eigenschaften sind technische Keramiken ebenso unabdingbar für die Elektro- und Elektronikindustrie. Sie finden unter anderem Anwendung als Isolatoren, (Halb‑) Leiter, Piezoelemente und Varistoren. Auch aus der Medizintechnik, insbesondere der Implantologie, sind Keramiken aufgrund ihrer Biokompatibilität und chemischen Beständigkeit nicht mehr wegzudenken. Keramiken lassen sich anhand ihrer Zusammensetzung in drei Hauptgruppen unterteilen: – Silikatkeramik – Oxidkeramik – Nichtoxidkeramik Silikatkeramiken waren die ersten Keramiken, die für technische Anwendungen genutzt wurden. Sie werden auch heute noch größtenteils aus natürlich vorkommenden Mineralien hergestellt und bestehen meist zu einem hohen Anteil aus silikatischer Glasphase. Aufgrund der hohen Verfügbarkeit der Rohstoffe und verhältnismäßig niedrigen Sintertemperaturen gehören Silikatkeramiken zu den günstigsten Vertretern der technischen Keramik. Sie werden hauptsächlich als Isolatoren in der Hoch- und Niederspannungstechnik angewendet. Zu den Oxidkeramiken gehören im Wesentlichen einphasige Metalloxide wie Aluminium- (Al ), Magnesium- (MgO) und Zirkonoxid (ZrO ). Sie zeichnen sich durch deutlich höhere Schmelzpunkte als Silikatkeramiken, hohe Härte und ein feines Gefüge mit sehr geringer Korngröße aus. Die wichtigsten Vertreter der Nichtoxidkeramiken sind Carbide und Nitride, aber auch Boride, Silicide und Fluoride, sowie Modifikationen des Kohlenstoffs (Diamant, Graphit etc.) werden dieser Gruppe zugeordnet. Die äußerst große Bandbreite an Elementen und chemischen Bindungsarten bedingt die Heterogenität dieser Gruppe. Gemeinsame Merkmale sind sehr hohe Härte (HV ≥ 2000 N/mm ) und ein hoher Schmelzpunkt (T ≥ 2400°C, abgesehen von T ) = 1900°C). Für die Verarbeitung dieser Hochleistungskeramiken bedarf es extrem feiner Pulver und sehr hoher Sintertemperaturen, meist in sauerstofffreier Atmosphäre. Dies führt zu höheren Verfahrens- und demnach Materialkosten.
Technische Keramik

Technische Keramik

Keramikwerkstoffe, die auf technische Anwendungen hin optimiert wurden, bezeichnet man als technische Keramik. Sie zeichnen sich unter anderem durch ihre Reinheit und die enger tolerierte Korngrösse sowie durch spezielle Brennverfahren wie das Sintern aus. Aufgrund ihrer spezifischen Eigenschaften sind sie anderen Werkstoffen in vielen Einsatzbereichen überlegen. Verschleissfestigkeit. Maximale Widerstandsfähigkeit gegen Abrieb Temperaturbeständigkeit. Hitzebeständigkeit bis weit über 1000 Grad Celsius Minimale Wärmeausdehnung. Reduktion mechanischer Spannungen im Bauteil Geringe Dichte. Leichtes Material bei hoher Festigkeit Grosse Härte. Keramik ist wesentlich härter als Stahl Biokompatibilität. Ideal für den Einsatz in der Medizintechnik Elektrisches Isoliervermögen. Hohes elektrisches Isoliervermögen, Halbleiter- oder piezoelektrische Eigenschaften Material: ATZ HIP (80% ZrO₂ / 16% Al₂O₃ / 4% Y₂O₃), Korngrösse: 0.36 µm, Vergrösserung: × 20 000 Material: ZrO₂ TZP-A HIP (94.75% ZrO₂ / 5% Y₂O₃ / 0.25% Al₂O₃), Korngrösse: 0.34 µm, Vergrösserung: × 20 000 Eine Frage des Zusammenspiels Die jeweiligen Charakteristika der Keramikkomponenten werden durch die individuelle Zusammensetzung der Rohstoffe und die unterschiedlichen Herstellungsverfahren definiert. Dabei spielen die Art, Reinheit und Korngrösse der Ausgangsmaterialien und der gewählte Prozess der Formgebung – zum Beispiel isostatisches Pressen oder Spritzgiessen – eine zentrale Rolle. So vereint der Keramikwerkstoff Aluminiumnitrid (AlN) beispielsweise beste Wärmeleitungseigenschaften mit minimaler Wärmeausdehnung, während Zirkonoxid (ZrO₂) das gleiche Elastizitätsmodul wie Stahl besitzt. Der Herstellungsprozess Bei Produkten aus technischer Keramik sind Werkstoffeigenschaften, Form und Grösse untrennbar mit den einzelnen Produktionsschritten verbunden. Die Herstellung des Rohmaterials inklusive der gezielten Beeinflussung der Mikrostrukturen im Sinterprozess sind ebenso entscheidend für die fertige Komponente wie die finale präzise Bearbeitung im Schleifprozess. Herstellungsprozess im Detail Für individuelle Ansprüche Aufgrund ihrer spezifischen Eigenschaften wie Verschleissfestigkeit und Temperaturbeständigkeit kommen Bauteile aus technischer Keramik überall dort zum Einsatz, wo andere Materialien den Ansprüchen nicht genügen – zum Beispiel als Lager bei Gasturbinen, elektrische Isolatoren, Heizelemente, Ersatz für Knochen oder Zähne in der Medizintechnik, als Elemente für die Garnveredelung in der Textilindustrie sowie in der Uhren- und Schmuckproduktion. Oxid- oder Nichtoxidkeramik – auf die Bindung kommt es an Oxidkeramik Oxidkeramiken bestehen mehrheitlich aus Metalloxiden und weisen einen vergleichsweise höheren ionischen Bindungsanteil als sogenannte Nichtoxidkeramiken auf. Dies bedeutet, dass der Aufwand bei der Herstellung ihrer Rohstoffe vergleichsweise geringer ist. Zu den Oxidkeramiken zählen zum Beispiel Aluminiumoxid (Al₂O₃), Bariumtitanat (BaTiO₃), Magnesiumoxid (MgO), Zirkonoxid (ZrO₂), sowie Mischkeramiken wie Bleizirkonattitanat (PZT), mit Aluminiumoxid verstärktes Zirkonoxid (ATZ) und mit Zirkonoxid verstärktes Aluminiumoxid (ZTA). Nichtoxidker
Technische Keramik

Technische Keramik

Wir liefern nach Ihren Zeichnungsvorgaben Groß- und Kleinserien auf Anfrage. Ein Werkstoff mit Zukunft • Verschleißfest • Hitzebeständig bis weit über 1000°C • Korrosionsbeständig • Unempfindlich gegen Chemikalien • Antimagnetisch • Keine elektrische Aufladung • Lebensmittelunbedenklich • Hart wie Diamant Die Verwendung von technischen Keramikteilen aus Aluminiumoxid, Zirconiumoxid und Siliziumnitrid im Maschinenbau und der Textilindustrie gleicht einem Siegeszug. Fadenführer und Fadenformgebungsteile, Abzugsdüsen und Bremselemente für Naturfasern und Synthetikfäden ermöglichen enorme Produktionssteigerungen bei immer gleichbleibender Qualität. Rohre, Stäbe, Kolben, Düsen, Profile, Gleitlager und Wellen werden im Sondermaschinenbau eingesetzt. Weitere Anwendungsgebiete sind Pumpengleitlager, Armaturen im Sanitärbereich, Steuerungs- und Regeltechnik und Dichtungselemente.
Technische Keramik

Technische Keramik

Hochleistungskeramik übernimmt heute zunehmend Aufgaben, bei denen früher Metalle eingesetzt wurden. Die Anwendungsbereiche Technischer Keramik werden sich in Zukunft daher sicher noch vervielfachen. Technische Keramik Hohes Zukunftspotenzial Hochleistungskeramik übernimmt heute zunehmend Aufgaben, bei denen früher Metalle eingesetzt wurden. Viele Verfahren, die inzwischen selbstverständlich sind, galten noch vor wenigen Jahrzehnten als unrealisierbar. Die Anwendungsbereiche Technischer Keramik werden sich in Zukunft daher sicher noch vervielfachen. Die Werkstoffeigenschaften Technischer Keramik lassen sich sehr genau dem Anforderungsprofil der jeweiligen Anwendung anpassen. Im Vordergrund stehen häufig: seine hohe Hitzeresistenz seine hohe Abrieb- und Verschleißfestigkeit seine große Härte Fertigungsbeispiele aus dem Bereich Technische Keramik. Ein wichtiges Einsatzgebiet für Technische Keramik sind Anwendungen, in denen eine hohe Verschleißfestigkeit, eine sehr gute Isolierung gegen hohe Ströme und eine sehr gute Temperaturfestigkeit gefordert sind. Hier eine Auswahl aus unserer Produktion.
Technische Keramik

Technische Keramik

Aluminiumoxid, Zirkonoxid, Aluminiumoxid-Zirkonoxid-Verbindung, Zirkonoxid mit ESD-Eigenschaften (leitfähige Keramik), Siliciumnitrid
TECHNISCHE KERAMIK

TECHNISCHE KERAMIK

Teile haben typischerweise eine Größe von 0,3 mm bis zu ca. 40 mm mit Toleranzen von weniger als 5 -10 μm. Werkstoffe: Alumina, Zirconia, Saphir. Der Werkstoff Keramik bietet interessante Eigenschaften wie Härte, Verschleissfestigkeit, Hitzebeständigkeit, thermische und elektrische Isolation, Biokompatibilität sowie grosse Formenfreiheit. Precipart liefert mikromechanische Präzisionsteile aus diversen Keramiken als mechanisch gefertigte, gespritzte oder additiv hergestellte Komponenten.
Technische Keramik

Technische Keramik

Hochleistungskeramik, auch technische Keramik genannt, ist ein Werkstoff, der im Gegensatz zur dekorativen Keramik für technische Anwendungen optimiert wurde. Er zeichnet sich durch besondere Eigenschaften aus, vor allem hinsichtlich Hitzebeständigkeit, mechanischer Festigkeit und Formstabilität. Damit eignet sich Hochleistungskeramik in wachsendem Maße als Werkstoff für hochbeanspruchte Bauteile in Maschinen, Anlagen und Geräten. Beispielsweise für Zentrierstifte, Düsen, Schneidwerkzeuge oder Gleitlager – um nur einige zu nennen. Anders als bei Metallen erhält Hochleistungskeramik ihre speziellen Eigenschaften erst beim Herstellungsprozess, dem sogenannten Sintern. Dabei geht es in erster Linie um die gezielte Beeinflussung der Mikrostrukturen eines Konstruktionsteils. Die Eigenschaften eines Endproduktes können nämlich durchaus variieren – auch bei gleichem Ausgangsmaterial. Kernkompetenz von DOCERAM ist es daher, den Herstellungsprozess von Komponenten und Bauteilen aus Hochleistungskeramik in allen Phasen sicher zu beherrschen. Angefangen bei der Zusammensetzung der Rohmasse über die Formgebung bis zu den Sintervorgängen. Dabei stehen wir unseren Kunden bei der Produkt- und Materialauswahl, sowie auch bei der Bauteilkonstruktion beratend zur Seite. Wir verwenden als Ausgangsmaterial Zirkonoxid, Siliziumnitrid und Aluminiumoxid.
Technische Keramik

Technische Keramik

Bei Sembach beginnt jeder Erfolg mit einer Idee – Ihrer Idee. Unsere Mission ist es, diese Ideen mit unserem umfassenden Know-how in der Technischen Keramik Wirklichkeit werden zu lassen. Wir verstehen uns als Ihr Partner auf dem gesamten Weg vom ersten Konzept bis zum vollendeten Produkt.
Keramik für technische Anwendungen

Keramik für technische Anwendungen

Die von der BCE gefertigten Bauteile und Komponenten aus technischer Keramik decken ein sehr breites Spektrum von Anwendungen und Branchen ab. Das hängt damit zusammen, dass keramische Werk­stoffe wie Aluminiumoxid, Zirkonoxid, Mischoxide und auch die nicht-oxidischen Keramiken (wie z.B. Siliziumnitrid) aufgrund Ihrer spezifischen Eigenschaften in unterschiedlichsten Bereichen eingesetzt werden können. Generell lassen sich diese Werkstoffe als sehr hart, verschleißfest, hochtemperatur-be­ständig und auch unempfindlich gegen Säuren und Laugen charakterisieren. Die meisten keramischen Werkstoffe sind elektrisch isolierend und zeichnen sich oftmals durch eine geringe Wärmeleitfähigkeit aus. Diese Eigenschaften sind nahezu universell einsetzbar und können daher in vielen Branchen genutzt werden.
Technische Keramik – Werkstoff für höchste Ansprüche

Technische Keramik – Werkstoff für höchste Ansprüche

CeramTec hat in Zusammenarbeit mit einem deutschen Verlag umfangreiche Informationen, Know-how, Bilder und Anregungen zum Thema Technische Keramik zusammengestellt. Als Ergebnis wurde das Handbuch „Technische Keramik – Werkstoff für höchste Ansprüche“ im Buchhandel veröffentlicht. Das Handbuch bietet einen kompakten, aber detaillierten Einblick in die faszinierende Welt der Hochleistungskeramik und ist in deutscher oder englischer Sprache erhältlich. Die Kapitel des über 80 Seiten beinhaltenden Buchs umfassen unter anderem eine Übersicht über keramische Werkstoffe, die verschiedenen Herstellungsprozesse von Formgebung über den Grünling bis zum fertigen Bauteil, Grundregeln für die keramikgerechte Konstruktion von Bauteilen und Beispiele für Technische Keramik in praktischen technischen Anwendungen. Es ist außerdem im Buchhandel unter der ISBN 978-3-937889-97-9 erhältlich.
Technische Merkmale der Keramik

Technische Merkmale der Keramik

einsetzbar bis ca. 1700°C exzellente Stabilität gegen Temperaturgradienten sehr gute Thermowechselbeständigkeit beständig gegen Säure, Laugen, Lösungsmittel, andere Chemikalien beständig in oxidierender, inerter oder reduzierender Atmosphäre sowie im Vakuum beständig in diversen Metallschmelzen (Zink, Zinn, Aluminium, Bronze, Kupfer, ...) niedrige Wärmeleitfähigkeit elektrisch isolierend mechanische Bearbeitung durch Drehen, Fräsen, Bohren, Schleifen, Lasern, Wasserstrahlschneiden
Keramikscheiben, technische

Keramikscheiben, technische

Keramikscheiben, technische: Keramikscheiben werden im Maschinenbau zum grossen Teil für Verschleissanwendungen eingesetzt.
Technische Keramik für Automotive

Technische Keramik für Automotive

Kraftfahrzeugbauteile aus technischer Keramik für Lamdasonden, Dichtscheiben für Benzinpumpen, elektrische Widerstandskörper und Isolatoren, Gleitlager in aggressivem Abgas
Keramik

Keramik

Keramik besteht aus anorganischen nichtmetallischen Werkstoffen. Sie werden in Irdengut, Steingut, Porzellan, Steinzeug und Sondermassen unterteilt, die zu dem in Wasser schwer löslich sind und zu mindestens 30% kristallin bestehen. Zu unterscheiden lässt sich die Keramik in Ton- und Glaskeramik. Die Verarbeitung erfolgt grundsätzlich bei Raumtemperatur aus der Formung einer Rohmasse und durch anschließende Temperaturbehandlung von über 800°C. Teilweise erfolgt die Formgebung sogar über den Schmelzfuß mit Kristallisation. Das Bentonit wird im Bereich der Keramik in geringen Anteilen zu ca.5% als Zuschlag verwendet, verleiht dadurch mageren Massen besondere Eigenschaften (z.B. Plastizität) und ist unerlässlich.
keramik

keramik

Ein innovatives keramisches Composite-Material, das hohen Temperaturen standhält und dennoch leicht im Gewicht bleibt, ist in vielen Branchen gefragt. Die derzeit am Markt verfügbaren Werkstoffe sind nicht nur teuer, sondern erfüllen in den seltensten Fällen die hochkomplexen und spezifischen Anforderungen der Kunden. Die Bereiche Luftfahrt, Raumfahrt, aber auch sämtliche leistungsorientierte Industrien sowie die Elektromobilität verlangen nach innovativen Materialentwicklungen, die temperaturresistent und gewichtsoptimiert sind. Eine Marktrevolution namens CERAPREG® Mit dem leistungsstarken Silikat-Keramik-Gemisch CERAPREG bringt die ISOVOLTA Group als international führender Hersteller von Elektroisoliermaterialien, technischen Laminaten und Verbundwerkstoffen nun ein einzigartiges Material auf den Markt, das weitreichende Neuentwicklungen in unterschiedlichen Branchen ermöglicht und somit ein wahrer Gamechanger in Luftfahrt, Raumfahrt und Elektromobilität ist. Das Material punktet vor allem durch ein breites Spektrum an Eigenschaften, die vermeintlich konkurrierende Produkte am Markt in der Gesamtheit hinter sich lassen: Gewichtsreduktion: Durch das neue Material sind Gewichtseinsparung bis zu 40% im Vergleich zu gängigen non-ceramic-Lösungen möglich. Beständigkeit: Das innovative Material aus Silikat und Keramik hält einer mechanischen Belastung von 900°C stand, ist temperaturwechselbeständig und quasi-duktil. Belastbarkeit: Durch den Glasiervorgang wird das poröse Material nicht nur luftdicht, sondern bleibt dabei auch thermisch und mechanisch stabil. Es wirkt temperatur- und elektroisolierend. Individualisierbarkeit: Die Ausgestaltung erfolgt nach Kundenvorgaben als Rollware (Prepreg) oder als Spezialanfertigung. Drapierfähigkeit: Auf Wunsch kann das Material ohne Einbußen der Materialeigenschaften beliebig dreidimensional geformt werden. Es besteht keine Flaking-Gefahr. Lagerfähigkeit: CERAPREG kann aufwandsarm gelagert werden – die Aufbewahrung muss nicht in einer spezifischen thermischen Umgebung erfolgen. ITAR frei: CERAPREG unterliegt nicht der International Traffic in Arms Regulations und somit sind Export und Re-Export unproblematisch. Preisattraktivität: CERAPREG erfüllt als Hochtemperaturmaterial die höchsten Marktansprüche und ist nicht nur in der Performance, sondern auch im Preis konkurrenzlos. Handhabung: Kann auf einer polymerbasierten Prepreg-Produktionslinie verarbeitet werden. Neue Möglichkeiten für Luftfahrt, Raumfahrt, Verteidigung und Elektromobilität Überall dort, wo zuverlässige Hitzeisolation und eine maßgebliche Gewichtsreduktion entscheidend sind, bringt CERAPREG den entscheidenden Vorteil. Abgasrohre für beispielsweise Drohnen stellen genau diese Materialanforderungen. In der Automobilindustrie steht man ebenso vor der Herausforderung, die Performance von Auspuffanlagen oder auch Batteriekästen weiterzuentwickeln. Die Luftfahrt kann auch unter anderem im Turbinenbau die vielen Vorteile von CERAPREG ausschöpfen. Knowhow sensibler Branchen Hochspezialisiertes Technologiewissen und vor allem die Hoheit über unternehmenseigene Entwicklungen, Prozesse und Daten sind wichtige Argumente für den Einsatz von CERAPREG. Die gute Bearbeitbarkeit des Materials macht es möglich, dass sowohl Design- als auch Konstruktionsbesonderheiten in den Händen der Kunden bleiben und der Wissensvorsprung von Technologie- und Branchenführern nachhaltig im eigenen Unternehmen sichergestellt bleibt.
Keramik

Keramik

Keramik wird aus natürlichen, sorgfältig ausgewählten Rohstoffen hergestellt, wie zum Beispiel Quarzsand, Mineralien, Feldspat oder Tonerde. Besonders beliebt sind die Keramik-Platten auch aufgrund ihrer außergewöhnlich dünnen Plattenstärke von 3, 5 oder 12 mm. Damit eignet es sich für verschiedenste Anwendungen wie z.B. Küchenarbeitsplatten, Wandverkleidungen, Fußböden und Fassaden. Es ist undurchlässig für Wasser und unempfindlich gegen Flüssigkeiten, so dass es sich auch in hochbelasteten Bereichen ohne Probleme einsetzen läßt.
Technical ceramics

Technical ceramics

Capacité exceptionnelle de fabrication additive de composants en céramique technique L'excellence d’une ingénierie spécialisée dans la production de céramique technique Les céramiques deviennent des composants stratégiques pour les dispositifs médicaux innovants
KERAMIK

KERAMIK

Unsere dekorative Grossformatkeramik steht für charakteristische und individuelle Oberflächen mit Persönlichkeit. Dies erfüllt höchste Ansprüche hinsichtlich Design, Funktionalität und Authentizität. Keramik kann vielfältigste Weise verwendet und kombiniert werden. Dies garantiert grenzenlose Schönheit einer einheitlichen Oberfläche, die sich harmonisch in zahlreiche Einrichtungskonzepte anpasst. Flächen und Objekte erhalten damit einen hochmodernen und zeitlos ästhetischen Charakter. Die Grossformatkeramik ermöglicht einen nahezu fugenfreien Belag und lässt daher bei der Gestaltung viel individuellen Freiraum zu! Nicht nur als Wand-/Bodenbelag, sondern auch zur Herstellung von Küchen-/Cheminée-Abdeckungen, Verkleidungen, Möbelfronten und sogar für exklusive Möbelstücke kann Keramik verwendet werden. Darüber hinaus bietet sie eine Oberfläche mit hervorragenden Reinigungseigenschaften, die allen Säuren und Verschmutzungen widersteht. Gerne beraten wir Sie fachmännisch und unverbindlich. Vereinbaren Sie doch noch heute einen Termin bei uns.
Keramik

Keramik

Ein Werkstoff für alle Fälle. Durch unterschiedlichste Materialien, verschiedene Herstellungsverfahren und modernste Produktionsanlagen werden die Eigenschaften der einzelnen Bauteile noch in der Fertigung bis ins Detail optimiert.
Mischkeramik bzw. Dispersionskeramik

Mischkeramik bzw. Dispersionskeramik

Positive Eigenschaften der Oxidkeramiken (ZrO2 / Al2O3) kombiniert und dadurch die Werkstoffeigenschaften optimiert (ZTA / ATZ). Mischkeramik bzw. Dispersionskeramik (ATZ und ZTA-Keramik) Positive Eigenschaften der Oxidkeramiken (ZrO2 / Al2O3) kombiniert und dadurch die Werkstoffeigenschaften (ZTA / ATZ) optimiert. Als Mischkeramik werden Werkstoffe bezeichnet, die aus Mischungen von Zirkonoxid und Aluminiumoxid bestehen. Ziel der Mischung ist es, einen optimierten Werkstoff herzustellen, der die hohe Festigkeit und Kerbzähigkeit des Zirkonoxids mit der Härte des Aluminiumoxids kombiniert. Ist der % - Anteil von Aluminiumoxid höher als der von Zirkonoxid spricht man von ZTA – Keramik und umgekehrt von ATZ – Keramik. Besondere Eigenschaften: Hohe Festigkeit Hohe Kerbzähigkeit - Hohe Härte - Hohe Verschleißfestigkeit - Hoher Weibulmodul - Hohe Oberflächengüte - Gute elektrische Isolierung (ZTA) Anwendungen: - Diverse Implantate in der Medizintechnik - Hochleistungsschneidkomponenten in der Medizintechnik, - Metallbearbeitung und Maschinenbau - Messer, Bohrer, Fräser, Wendeschneidplatten
Hochtemperatur-Keramiken

Hochtemperatur-Keramiken

UHTC - Ultrahochtemperaturkeramik Obwohl mehrere vorteilhafte Wirkungen der Y2O3-Zugabe vor allem auf die Verdichtung und die mechanischen Eigenschaften dokumentiert wurden, war die Oxidationsleistung von mit Y2O3 überzogenem Material im Vergleich zu basischem ZrB2-SiC-Verbundwerkstoff schlechter. Neben Oxiden können Seltenerdelemente, die andere Verbindungen bilden, für Hochtemperaturanwendungen in Betracht gezogen werden. Keramik umfasst eine sehr breite Palette feuerfester Materialien, die eine universelle Definition erschweren. Im Allgemeinen kann Keramik als anorganisches, nichtmetallisches Material definiert werden, das aus metallischen und nichtmetallischen Verbindungen hergestellt wird. Die Struktur kann kristallin, teilweise kristallin oder amorph sein (Gläser).
Pumpenbauteile aus Keramik

Pumpenbauteile aus Keramik

Garantierten hohe Betriebssicherheit und große Wirtschaftlichkeit In Pumpen tragen Gleitringe, Gleitlager, Lagerbuchsen, Lagerhülsen für Axial- und Radiallager entscheidend zu einer langen Lebensdauer bei. Pumpenbauteile aus Keramik fertigen wir beispielsweise aus dem Werkstoff OK997 oder CARSIC310. Sie bieten auch bei hohen Temperaturen konstante Werkstoffeigenschaften: eine extreme Korrosions- und Verschleißbeständigkeit und eine gute thermische Belastbarkeit.
technische Bauteile aus Keramik

technische Bauteile aus Keramik

Technische Bauteile aus Keramik für Medizintechnik und Maschinenbau.
Ceramic tubes and rods

Ceramic tubes and rods

Wir liefern Keramikröhren mit ein- bis vierfachem Bohrung und in Größen von 0,8 bis 14 mm. Die Länge kann bis zu 2500 mm betragen und auch auf Kundenwunsch zugeschnitten werden. Aluminiumoxid-Keramikröhren werden in verschiedenen industriellen Öfen als Stütz- und Endisolierung verwendet, usw. Sie eignen sich auch für den Einsatz in Massenspektrometern und Vakuumsystemen als Durchführungsleitungen, als Thermoelement-Isolatoren sowie als elektrische und thermische Isolatoren in anderen Anwendungen. Keramik (Aluminiumoxid) Rohre werden aufgrund ihrer hohen mechanischen Festigkeit, chemischen Beständigkeit und Gasdichtigkeit als ideale Thermoelement-Schutzrohre verwendet. In der Regel werden Aluminiumoxid-, Mullit- oder Zirkoniumröhren für diese Anwendung verwendet. Aluminiumoxid-Rohre können als Primär- oder Sekundärschutzrohre für Edelmetall (platinbasierte) Thermoelemente verwendet werden. Sie schützen die Thermoelemente bei hohen Prozesstemperaturen >1200°C (2200 °F). Aufgrund ihrer guten Temperaturbeständigkeit, hohen Isolierwirkung und Temperaturbeständigkeit werden Aluminiumoxid-Isolationsrohre auch in B-Typ, S-Typ und als Wolfram-Rhenium (WRe) Thermoelementhülsen verwendet. Bei der Auswahl des geeigneten keramischen Schutzmantels für eine bestimmte Anwendung ist es wichtig, die spezifischen Eigenschaften jedes Materials zu berücksichtigen. Wir liefern Aluminiumoxid-Stäbe in Längen von bis zu 2,50 m und Durchmessern von 0,8 - 200 mm. Auf Anfrage können auch dreieckige oder quadratische Stäbe hergestellt werden. Aufgrund ihrer spezifischen Eigenschaften eignen sich Aluminiumoxid-Stäbe für Anwendungen unter widrigen Umweltbedingungen und werden in der Luftfahrt, Metallurgie, Textilindustrie, Medizin- und Elektronikausrüstung sowie in anderen Bereichen eingesetzt.
CERAMIC ENGINEERING

CERAMIC ENGINEERING

Mit dem Ceramic Engineering bieten wir Entwicklungs- und Konstruktionsleistungen für Baugruppen mit keramischen Komponenten an. Hier fließen die Eigenschaften der Hochleistungskeramik wie Abrieb- und Temperaturfestigkeit in ein Gesamtkonzept ein. In einer Entwicklungspartnerschaft erstellen wir in enger Zusammenarbeit mit dem Kunden ganzheitliche Lösungen für spezifische Anwendungen und setzen diese gemeinsam um. Bei der Entwicklung eines Produktes begleiten wir Sie auf Wunsch von der ersten Idee bis zur Serie. Hierbei übernehmen wir die Durchführung von Machbarkeitsstudien in gewünschtem Umfang, die Konstruktion und Herstellung von Prototypen sowie die Festlegung des für die Losgröße geeigneten Produktionsverfahrens. Wir unterstützen Sie auch bei der Auswahl des passenden passenden Keramikwerkstoffes und der Implementierung keramikgerechter Konstruktionen. Für Klein- und Mittelserien steht als Fertigungsverfahren das Niederdruckheißgießen zur Verfügung. Prototypen können mit abtragender Bearbeitung von Presskörpern hergestellt werden. Wir produzieren Keramik-Keramik- und Keramik-Metall-Baugruppen, die auf Budget, Stückzahl und betriebsbedingte Anwendung abgestimmt und nach Ihren Anforderungen geprüft werden. Wenn auch Sie keramische Komponenten in Ihre Produktion integrieren wollen, beraten wir Sie gerne.
Metallisierte Keramiken

Metallisierte Keramiken

Hochfrequenzsenderöhren, Vakuumschaltkammern, Clystrons, Vakuumkondensatoren, Röntgenröhren werden vorzugsweise mit metallisierten Keramikrohren aus AD 94 ausgeführt.
Bindemittel für technische Keramik

Bindemittel für technische Keramik

Unsere Polyvinylbutyrale Mowital® zeichnen sich durch ausgezeichnete Haft- und Filmbildungseigenschaften, hohe Bindekraft und perfekte optische Transparenz aus. Das Polymer ist in vielen organischen Lösemitteln löslich und mit verschiedensten Reaktionspartnern kombinierbar. Dank ihres extrem niedrigen Salzgehalts sind die Mowital SB-Typen hervorragend als temporäres Bindemittel für die Herstellung von Hochleistungskeramiken für Brennstoffzellen oder Piezokeramiken sowie für passive Bauelemente wie Kondensatoren, Spulen oder Widerstände geeignet.
Techn. Keramik, Industrieglas, 3D Druck

Techn. Keramik, Industrieglas, 3D Druck

Unsere jahrzehntelange Erfahrung in diesen vielfältigen Anwendungsbereichen haben wir für Sie genutzt, um ausgereifte Lösungen anbieten zu können. Hier erhalten Sie Informationen für Ihre individuellen Anforderungen. Sintern Entbindern Brennen Kalzinieren Biegen, Wölben Kühlen Trocknen